Interface and Model Operation

- Model requires Microsoft Office Professional '97
- Model can now be run in "batch" mode -- select a group of study areas and the model will cycle through them sequentially
- Computing requirements are similar to those for HM4
 - Fast Pentium processor recommended
 - 32MB of RAM minimum, 64 MB recommended

Counting, Locating, Clustering and Engineering Plant to Customers in the Hatfield Model, v5.0

PNR and Associates. Jenkintown, PA Hatfield Associates, Boulder, CO

Sponsors: AT&T

MCI

NARUC Convention November 7-13, 1997

Overview

Process Stages

- Counting customers
 - ➤ PNR Wireline Access Line Model (WALM)
- Locating customers
 - ➤ Geocoding actual customer location
 - ➤ Location gross-up process
- Clustering process
 - ➤ Grouping customers that can be served in a single distribution area into distribution areas
- Engineering distribution plant
 - ➤ Placing cables to serve located customer clusters

Process Overview

PNR Wireline Access Line Model

- Use BLR wire center boundaries data to assign customer locations to their serving wire center
- Use Census/Claritas/D&B/ARMIS data to determine target count of customer locations and lines by CB

Metromail Data on Residence Customers:

(100 million addresses and phone numbers)

Dun & Bradstreet Data of Business Customers

(11 million addresses, phone numbers and SIC codes)

Centrus Address Coding Modules

- Geocode customer addresses to point location (accurate to within 50 feet)

Yields Customer Location File of:

- Geocoded customer locations (Latitude and Longitudes)
- Target count of customer locations and customer lines

If customer geocode count fails short of CB target count

- Gross-up customer locations to match CB target and place on periphery of CB

Apply PNR clustering algorithm to geocodes

- Determine the collections of customer locations that "cluster" together

Apply Hatfield Distribution and Feeder Modules

- Engineer distribution plant to serve locations within a cluster
- Engineer distribution plant to link outliers to their home cluster
- Engineer feeder plant to link main clusters to wire centers

PNR Wireline Access Line Model

- PNR Wireline Access Line Model (WALM) estimates number of:
 - ➤ Customer locations, and
 - ➤ Telephone lines by
 - ➤ Census Block (CB), and by
 - ➤ Wire Center (WC)

Counting Customers

PNR WALM - Residence

- Determine a target number of residence locations by CB
 - ➤ Claritas 1996 household count projections at the Census Block Group (CBG) level are apportioned to the CB level based on 1990 U.S. Census distribution patterns
 - ➤ Consistency checks performed relative to Metromail customer location counts and county-level 1995 U.S. Census update data

PNR WALM - Residence (continued)

- Determine a target number of residence telephone lines by CB based on:
 - ➤ Residence customer location counts
 - ➤ Telephone penetration estimates based on statewide U.S. Census data as adjusted due to CBG-specific demographic factors such as age and income
 - ➤ "Second" line penetration based on age and income
- Target counts of households and lines are then normalized to match study area residence line totals as reported in:
 - ➤ ARMIS, NECA, USTA, RUS, etc.

Counting Customers

PNR WALM - Business

- Determine a target number of business locations by CB based on:
 - ➤ Dun & Bradstreet (D&B) business establishment counts located to the CB level based on geocoded addresses
- Determine a target number of business telephone lines by CB based on:
 - ➤ Gross counts of business lines estimated from D&B business establishment counts, employee counts and SIC code information
 - Shares of lines that are single line business or multiline business based on employee counts and

PNR/HAI/AT&T/MCI des

Counting Customers

PNR WALM - Business (continued)

- Target counts of business locations, employees and lines are then normalized to match study area business line totals as reported in:
 - ➤ ARMIS, NECA, USTA, RUS, etc.

PNR WALM - WC Assignment

- BLR data on WC boundaries is primary basis for assignment of customer locations and lines to WCs
 - ➤ BLR boundaries are conformed to CB boundaries
 - ➤ CBs are then assigned to WCs based on these boundaries
 - ➤ Customer telephone number NPA-NXX and Bellcore LERG WC associations are used to verify BLR accuracy and resolve data inconsistencies
- All customer locations located in CBs that are associated with a WC are then assigned to that

Metromail Residential Data

- Large file of deliverable postal addresses and telephone numbers
 - ➤ Contains over 100 million household records
 - ➤ Covers over 90% all U.S. households
- Compiled from many information sources:
 - ➤ Telephone white pages, voter and automobile records, real estate transaction data, warranty cards, etc.
- Accuracy maintained
 - ➤ File is updated 65 times annually
 - ➤ Incorporates postal address standardization practices
- National change of address processing

Dun & Bradstreet Business Data

- Information on more than 11 million business establishments (over 90% coverage)
 - ➤ Postal addresses
 - ➤ Telephone numbers
 - ➤ Counts of employees
 - ➤ Standard Industrial Classification (SIC) codes
- Compiled from many information sources:
 - ➤ Gov't. and trade orgs., financial institutions, etc.
- Accuracy maintained via:
 - ➤ Daily updates
 - ➤ Annual management interviews

Geocoding Process

■ Centrus Address Coding Modules used to assign geocodes to business and residence customer addresses

■ Process:

- Standardize addresses to USPS specifications
- ➤ Determine latitude and longitude coordinates (geocodes) of each address
- ➤ Retain geocodes that are precise to six decimal places of accuracy (50 feet or less)
- ➤ Discard less accurate geocodes

Geocoding Process (continued)

- Quality measures
 - ➤ Nationally, about 80% of all addresses successfully geocode to the six decimal place point level
 - ➤ Ungeocoded locations due to:
 - Faulty address records
 - Faulty road location (TIGER) files
 - P.O. Boxes, rural routes, etc.
- Geocoding success is improving rapidly due to:
 - ➤ Tightened postal requirements
 - ➤ Needs of non-postal shippers (e.g., UPS, Fedex)
 - ➤ E911 expansions

Geocoding Process (continued)

Note the difference in Census Ids. _ Those with A SX codes are 12 digit while ZXnX codes are only 10

STREET	CITY	ZIP	LONG	LAT	CENSUS ID	MATCH CODE	LOC
42 HUMMINGBIRD LN	ALMONT	81210	-106.486424	38.781180	08051963600110	S80	AS0
213 RAINBOW RD	ALMONT	81210	-106.488218	38.788311	08051963600110	S80	ACO
954 COUNTY ROAD 744	ALMONT	81210	-106.767130	38.749458	08051963800124	S80	AS1
2809 COUNTY ROAD 38	GUNNISON	81230	-106.940758	38.470850	08051963600288	S80	AS1
18806 COUNTY ROAD 765	ALMONT	81210	-106.480000	38.723500	080519636001	S80	ZB9E
5866 COUNTY ROAD 62	GUNNISON	81230	-106.617400	38.439800	080519636001	S80	ZB9E
299 ZUNI TRL 146 CACTUS HILL DR	GUNNISON GUNNISON	81230 81230	-106.936300 -106.643400	38.504200 38.467800	080519636002 080519636001	S80 S88	ZC7K ZC7K
200 INDUSTRIAL PARK RD	GUNNISON	81230	-106.559900	38.504100	080519636001	S89	ZC7K
34 SLATE VIEW LN	CRESTED BUTTE	81224	-106.882500	38.807100	080519638001	S88	ZT7J
17300N N STATE HIGHWAY 1	ALMONT	81210	-106.846000	38.664600	080519636002	S82	ZT9F

 $Address\ information\ is\ provided\ courtesy\ of\ Metromail,\ Inc.$

Note the difference in Lat / Long assignments. Point geocodes go to the 6th decimal place

Geocoding Process (continued)

■ Location Codes

➤ Location codes indicate the accuracy of the assigned geocode

Code Description

- ASO Indicates a house range address geocode. This is the most accurate geocode available. Best Location offset 50'.
- AS1 Indicates a house range address geocode. Street side is unknown. CB to the left of the intersection is assigned and location is in middle of street.
- AS3 Indicates address was interpolated onto a TIGER segment that did not originally contain address ranges. CB to the left of intersection is assigned and location is in middle of street.
- ZXnX Indicates location based on ZIP code data. This is NOT a *point* geocode and therefore is not used in Customer Location

Geocoding Process (continued)

Levels of geocoding in our example

- 100 Residential points
 - ➤ 77 records to AS0
 - ➤ 9 records to AS1
 - ➤ 14 records to a ZIP level
- Leaves customer location file with 86 usable locations

- 100 Business Points
 - ➤ 60 records to AS0
 - ➤ 8 records to AS1
 - > 3 records to AS3
 - ➤ 11 records to a ZIP level
 - ➤ 18 records could not be geocoded
- Leaves customer location file with 71 usable locations

Customer Location Positioning

- Counts of geocoded customer locations in each CB are compared with WALM target count of customer locations for that CB
 - ➤ Count of customer locations that are "unlocated" within the CB is determined
 - ➤ "Unlocated" customers are then assumed to be placed uniformly along the periphery of the CB and the geocodes implied by these placements are added to the customer location file (CLF)
 - ➤ Assures that the CLF contains geocodes for 100% of the target number of customer locations by CB

Customer Location Positioning

Clustering Customer Locations

- CLF contains a list of customer geocodes for 100% of the target location count for each WC
- To determine efficient engineering of telephone plant, all customer locations associated with a WC are analyzed to determine what cluster patterns exist
 - ➤ No artificial CB/CBG or "grid" boundaries are permitted to limit the identification of clusters
- Algorithm must ensure that identified cluster configurations comport with telephone plant engineering specifications

PNR Clustering Algorithm

- Algorithm is based on the "nearest neighbor" methodology with added engineering rules
 - ➤ All distances measured based on rectilinear (right angle) routing
 - ➤ No point in a cluster may be more than XX kft. distant from the cluster's centroid
 - ➤ No cluster may exceed XXXX lines in size
 - ➤ No point in a cluster may be farther than X miles from its nearest neighbor in the cluster

Red parameters are input values to the clustering process

PNR Clustering Algorithm (continued)

- Algorithm allows telephone plant engineering restrictions to be incorporated as an integral part of the clustering process
- Algorithms that require engineering restrictions to be post-applied to clusters are not efficient

11/18/97

➤ Efficiency is essential if 111 million customer locations are to be analyzed for clusters

PNR Clustering Algorithm

Detail Clustering Area

Steps:

- 1. Start at any point A.
- 2. Draw a circle 100' in radius
- 3. All points within are part of the cluster
- 4. Continue with each point in the cluster
- 5. Move to point B and repeat process complete for all unclustered points.
- 6. Return to point A and create a circle 200′ in radius.
- 7. Continue

PNR Clustering Algorithm (continued)

- Engineering requirements for "main" clusters:
 - ➤ No point in a main cluster may be more than 18 kft. distant from the main cluster's centroid
 - ➤ No main cluster may exceed 1800 lines in size
 - ➤ No point in a main cluster may be farther than 1 mile from its nearest neighbor in the main cluster
 - ➤ A main cluster must contain at least 5 points
- "Outlier" clusters meet all main cluster requirements, except they contain fewer than 5 points
 - ➤ Identity of nearest other cluster established as well

PNR Clustering Algorithm

